Live Session
Wednesday Posters
Late Breaking Results
Understanding Fairness in Recommender Systems: A Healthcare Perspective
Veronica Kecki (University of Gothenburg) and Alan Said (University of Gothenburg)
Abstract
Fairness in AI-driven decision-making systems has become a critical concern, especially when these systems directly affect human lives. This paper explores the public's comprehension of fairness in healthcare recommendations. We conducted a survey where participants selected from four fairness metrics -- Demographic Parity, Equal Accuracy, Equalized Odds, and Positive Predictive Value -- across different healthcare scenarios to assess their understanding of these concepts. Our findings reveal that fairness is a complex and often misunderstood concept, with a generally low level of public understanding regarding fairness metrics in recommender systems. This study highlights the need for enhanced information and education on algorithmic fairness to support informed decision-making in using these systems.